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The correspondence of the thermal movement in crystals and the Bragg-reflexion intensity distribu- 
tions is treated in terms of a theory developed for describing the effect of static mechanical distortions. 
The basic functions appearing in that theory are replaced here by the corresponding time averages. 
The dependence of the temperature factor on the crystal size is discussed. The effect that additional 
static mechanical distortions have on the temperature factor is also discussed. Moreover it appears 
from the given expressions that there is a broadening in the Bragg reflexions as a consequence of the 
crystal distortions due to thermal movement. In the kinematical approximation, the integral intensity 
of a Bragg reflexion is temperature independent. If the integral intensity decreases as the temperature 
increases this is either a dynamical effect or a consequence of a measurement that takes only into ac- 
count the intensity in a limited region around the maximum of the Bragg reflexion. In line profile 
analysis, the thermal broadening effect can be separated from the mechanical distortion broadening 
effect by means of Stokes's method if a reference powder, of the same substance (in an undistorted con- 
stitution) as the powder subjected to analysis is used. 

Introduction 

The temperature dependence of X-ray diffraction in- 
tensities is usually taken into account by the Debye-  
Waller factor exp ( - 2  W), that is derived on the basis 
of the kinematical theory. However, many authors 
(see e .g .M.  Born, 1942-1943) have noticed that the 
thermal effect on the diffraction pattern is much more 
complicated than the factor exp ( - 2 W )  would sug- 
gest: in particular the thermal diffuse scattering (TDS) 
is not completely described by the Debye-Waller fac- 
tor. 

A sharp distinction is generally drawn between Bragg 
scattering and TDS (in the one, two or more phonon 
scattering approximation); the Debye-Waller factor is 
believed to describe the temperature dependence of the 
Bragg reftexions and it is understood as a general fac- 
tor of proportionality for the TDS. 

It is known that for instance anharmonicity of the 
crystal causes deviations from the law described by the 
Debye-Waller factor (Maradudin & Flinn, 1963). Dy- 
namical effects also produce deviations from that law: 
Parthasarathy (1960) found that the integral intensity 
of a Bragg reflexion of a thick crystal is proportional 
to exp ( -  W) instead of exp ( - 2  W). 

In this paper we will show that deviations also arise 
in the region where the kinematical theory describes 
the diffraction pattern correctly. The theory already 
developed for the diffraction of small distorted crys- 
tals (La Fleur,  1969) is adapted here to the case of 
thermal movement. Since the distortions due to the 
thermal movement are time dependent, some quan- 
tities defined in the theory mentioned above have to be 
replaced by their time averages. In this way the broad- 
ening of the Bragg reflexions due to the thermal move- 
ments in the crystal appears as a special case of a more 

general one. The TDS is produced by the tails of those 
(broadened) Bragg reflexions. 

It is found that the integral value of the intensity 
of a Bragg reflexion, in the kinematical approximation, 
is temperature independent. The top intensity of a 
Bragg reflexion is proportional to the Debye-Waller 
factor exp ( - 2 W ) ,  only if the crystal is sufficiently 
large (but not so large, that the kinematical theory 
cannot be used). The value of the temperature factor 
depends on the crystal size and moreover on additional 
static mechanical distortions. 

Derivation of equations 

The distinction between TDS and the Bragg reflexions 
is based on a series expansion, that is obtained from 
the exact formula for the intensity distribution I(s): 

4~Z2 
I ( s )=fo  2 ~. exp 27~is. {xz-xz,} NM 

l l '  

× ~ {s. ej(k)}2E~(k) { 1 - c o s  (2nk.  xz -xz , )} ] .  (1) 
k,j .I 

For the derivation of this formula see, for instance, 
Maradudin, Montroll &Weiss (1963).The formula holds 
for a Bravais lattice. The symbols represent the follow- 
ing: s, reciprocal-space vector; I(s), intensity at the 
point s in the reciprocal-space ;f0, structure factor of an 
atom; l, set of three integers (li, 12,13), indicating xz, the 
lth lattice point of the crystal; N, number of atoms in the 
crystal; M, mass of an atom; k, wave-vector of a pho- 
non; j, indication of a branch of the phonon spectrum; 
e~(k), polarisation-vector of a phonon, of the j th  branch 
of the spectrum, with wave-vector k; E~(k) is a short- 
hand notation for {h/2og~(k)} coth {he)~(k)/2k T}, where 
h is Planck's constant divided by 2re, T the temperature, 
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k the Boltzmann constant and o)j(k) is the angular 
frequency of a phonon, of the j th  branch, with wave- 
vector k. 

The above mentioned series expansion is 

I(s) =fo 2 exp ( -  2 W) [I0 + Ix + I2 + . . .  ] (2) 
with 

I0= ~ exp {2gis. (x t -xv)} ,  (3) 
ll" 

4re 2 
Ix = ~ ~ ~ {s. eg(k)}2Ej(k) 

k] 

× cos {2~rk. (xz-xg)} exp {2~ris. (xt-xv)} (4) 

and so on. 
I0 is interpreted as the Bragg reflexion and Ix,/2 and 

further terms as the thermal diffuse scattering. Such 
an interpretation would be correct if Ix, I2 . . .  would 
vanish at sn, the points in reciprocal space, where 
Bragg reflexions occur. In reality the TDS peaks at the 
points Sn. (See Warren, 1968). It is therefore better to 
avoid the above series expansion and to write formula 
(1) in a form equivalent to that indicated in formula (7) 
of a previous paper (La Fleur, 1969), giving the inten- 
sity distribution of a distorted crystal. 

We first write down the intensity distribution at a 
given time t: 

I ( s , t )=Nf2ol ;  ~ exp (2.is.  x)J(Xm- x)dx 
c o  m 

x ~(x, Ax, t) exp (2zcis. Ax)d(Ax) 
- - c o  

( X m = X I - - X v )  . (5) 

The function q~(x, Ax, t) is a distribution function for 
the relative shifts of the atoms (modulo a lattice vec- 
tor) at time t. For more details of that function we 
refer to the previous paper (La Fleur, 1969). From 
equation (5) it follows that the intensity distribution 
In(s0, t) around the nth reciprocal lattice point at time t 
equals: 

In(so, t )=f~ exp (2rcis0. x)dx 
- - c o  

x q~ (x, Ax, t) exp (2~zis. Ax)d(Ax) 
- - c o  

(s0=s-sn).  (6) 
When we introduce the time average ¢(x, Ax) of 
• (x, Ax, t), we get for the time average In(s0) of 
In(So, t) 

In(so) = f2o l;coexp (2zciso . x)dx 

f coco~(x, Ax) x exp (2rcis. Ax)d(Ax). (7) 

This shows that it is natural to describe the effect of 
thermal movement in terms of the theory for distorted 
crystals. 

In the same way as in that theory we may write for 
(x, Ax): 

1 { 1 -  C(x)} (s) ¢(x,  Ax)= C(x)~0(x,~x) + v 

where C(x) is the form function of the average coher- 
ently scattering region and ~0(x, Ax) is a new distribu- 
tion function for the relative shifts (modulo a lattice 
vector) of the atoms. The function ~0(x, Ax) fulfils the 
condition 

(o{x,½(el, e2, e3)} =0  (9) 

with: ex,e2,e3 primitive basis translation vectors. 
We denote the volume of a unit cell by v and that 

of the crystal by V. For a more detailed description of 
the quantities ~0(x, Ax) and C(x) we refer to the previous 
paper (La Fleur, 1969). 

The effect of the finiteness of the crystal is taken into 
account by the form function of the crystal V. V(x). 
Including this effect also in equation (6) and using 
equation (7) one obtains 

In(so)=f~V V(x)C(x) exp (2~is0. x)dx 
- - c o  

x f;co~0(x, Ax) exp (2zris. Ax)d(Ax). (10) 

We try now to write formula (1) in the form of equation 
(10). Writing Xm for xz-xz" and using the fact that 
Sn. Xm are integers, we get 

I(s0)=fo 2 ~ V. V(xm) exp (2nis0. Xm) 
m 

× exp [ -  
4rcz ] 

(11) 

Replacing summation by integration formula (10) be- 
comes 

pco 

× exp { - U ( s , x ) ) d x  (12) 
where 

4~ 2 
~. {s. ej(k)}2Ej(k) U(s ,x ) -  N M  kj 

x { l - c o s  (2rck, x)}. (13) 

Comparison of equations (10) and (12) shows that 

(,co 
C(x) _ ~_co ~0(x, Ax) exp (2~ris. Ax)d(Ax) 

=exp { -  U(s,x)}. (14) 

We now show that in equations (10) and (12) s can be 
replaced by Sn within a very good approximation. Take 
the Fourier transform of In(s0). According to equation 
(10) one finds 
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S _~ In(So) exp ( -2n iso .  x')dso 

= f ~ V  V(x)C(x) exp {Dr/s0. (x-x')}dxds0 
- - o o  

I~oo ~0(x, Ax) exp {2ni(sn+s0). Ax}d(Ax) × 

=fo2 V l_~ f i (x ' -  x + Ax) V(x)C(x)dx 

x (x, Ax) exp (2nisn. Ax)d(Ax) 

=f~VI~_ooV(x ' + Ax)C(x' + Ax)~0(x' + Ax, Ax) 

× exp (2nisn. Ax)d(Ax). (15) 

For V(x), C(x) and ~0(x, Ax) sufficiently slowly varying 
functions of x, since Ax~x,  one may also write in- 
stead of equation (15): 

I ~_ooln(so) exp ( -  2niso. x)ds0 

~-f2oVI~_ooV(x)C(x)~(x, Ax) exp (2niSn. dx)d(Ax). 

(16) 

This is the same as replacing s by Sn in equation (10). 
For justifying this approximation in the case of the 

thermal movement, we only need to show that C(x) 
and ~0(x, Ax) vary slowly with x. According to equa- 
tion (14) ~0(x, Ax) has the following Fourier expansion: 

1 2 
~o(x, Ax) = -- + - - - -  y. cos (2nSn Ax) 

v vC(x) n # 0  

x exp { -  U(sn, x)}, (17) 

where x # 0 and n # 0 means n = (na, nz, n3) # (0, O, O); 0 is 
the zero vector. 

We also have 
1 2 

~o(x+Ax, Ax) = --  + Y v v C ( x + A x ) ~ o  c°s (2nSn. Ax) 

x e x p { U - ( s n . x + A x ) } .  (18) 

It is now always possible to find a Ak~k ,  such that 

cos { 2 n ( k + d k ) . x } = c o s  {2nk. (x+Ax)} (19) 

so equation (18) is equivalent to: 

1 2 
~o(x + Ax, A x ) =  --  + ~ cos (2nSn Ax) 

v v C ( x + A x ) , t o  
4nz 

x exp ~ {Sn. e j (k - -Ak)}ZE:(k -Ak)  
N M  k: 

x {1-cos  (2nk. x)} ]. (20) 
J 

Since e4(k) and coj(k) vary slowly for most values of k 
instead of equation (20) we can set 

1 2 
~0(x+Ax, Ax)_ -- + 

v vC (x + Ax) 

x ~ cos (2nsn. Ax) exp { -  U(sn, x)}. 
n # 0  

(21) 

Comparison of equations (21) and (17) shows that 
~0(x+Ax, x) and C(x+Ax) can be replaced by ~0(x, Ax) 
and C(x) respectively within a good approximation, 
so they can be considered as slowly varying functions 
of x. 

In the case of the thermal movement explicit ex- 
pressions can be given for C(x) and ~0(x, Ax). So C(x) 
can be found by substituting equation (11) into equa- 
tion (17). One obtains 

C(x)=2 ~. ( -  1),l+-2+na+a exp { -  U(sn, x)}. (22) 
n # 0  

Substituting equation (20) into equation (17) one gets 
an expression for ~0(x, Ax). Note that by definition 
C(0)= 1 and ~0(0,Ax)=~(Ax). 

The general behaviour of the functions C(x) and 
~0(x, Ax) is the same in the case of thermal movement 
and of static mechanical deformation: C(x) decreases 
when x increases and the spread of ~0(x, Ax) as a func- 
tion of x increases with increasing x. Therefore the 
thermal movement also produces Bragg reflexions ex- 
kibiting a 'particle-size broadening' and a 'distortion 
broadening'. The former one is order independent 
whereas the latter one is order dependent. 

Nevertheless in the case of thermal movement the 
functions C(x) and ~0(x, Ax) have an additional inter- 
esting property. The factor cos (2nk. x) oscillates very 
rapidly as a function of k for large [x[. Therefore in 
this case the contribution of the term containing 
cos (2nk. x) in the exponentials of equations (17) and 
(22) vanishes by the summation over k, and C(x) be- 
comes independent of x: 

lira C ( x ) = 2  E ( -  1).1+.2+.3+1 
• X'-+co n # O  

4n z ] 
x exp E Ej(k){s,,. e~(k)) 2 

N M  kj 

= 2 Y. ( -  1) "'+"2+"a+1 exp ( - 2 W )  (23) 
n ¢ O  

where W is a function of (nb nz, n3). The same can be 
proved for ~0(x, Ax). 

Let us consider now the effect of thermal movement 
on the diffraction intensity distribution when static 
mechanical distortions are present in the crystal. We 
assume that the dynamics of the thermal movement 
is not affected in first approximation by the static dis- 
tortions. We introduce the function ~me(x, Ax), being 
the distribution function for the relative shifts of the 
atoms (to within a lattice vector) in the absence of 
thermal movement. When we take into account the 
thermal movement, we get for the intensity distribu- 
tion 
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I . ( s 0 )  = 

f~o V V(x) exp (2rcis0. x) exp { -  U(sn, x)}dx 
- - c x ~  

l ~ ~me(x, Ax) exp (2rcisn. Ax)d(Ax). (24) × 
d-- cx~ 

The thermal effect is described by exp {-U(sn,  x)}; 
this exponential can be written as the Fourier trans- 
form of a function ~th(x, Ax): 

exp {-- U(sn, x)} 

= I °° ~th(x, Ax) exp (2zCiSn. Ax)d(Ax). (25) 
d-- o o  

Combining equations (24) and (25) we find that the 
intensity distribution is given again by equation (7) if 
we put 

q~(x, Ax)=g~t(x, Ax)=gSme(X, ZX) * cPth(x,3x). (26) 

Of course the convolution integral is taken with respect 
to the variable zlx. 

Now equation (24) can be put into the form of equa- 
tion (10), the functions C(x) and ~0(x, Ax) determining 
completely the autocorrelation function ~(x), given by 

~ ( X ) =  ~ ~0t(Xm, ZJX) (27) 
m 

and describing the time averaged probability density 
of finding an atom at a distance x from another ar- 
bitrary atom in the crystal. 

Discussion 

An expression for the integral intensity of a Bragg 
reflexion can be derived directly from equations (24) 
and (26) 

f oo I (s0)ds0 
/2 

- - o o  

x exp { -  U(sn, x)}dxds0 

x ~me(X, Ax) exp (27HSn . Ax)d(3x) 
i t ~ o o  

x axds0 

× f_~ooet(x, Bx) exp (2zCiSn. Bx)d(Ax) 

i o~ g(x) V(x)d = V ~  x 
- - ¢ x )  

x ~t(x, Ax) exp (2~isn • Ax)d(Ax) 
- - c , o  

= Vf~ g(Ax) exp (2~isn. Ax)d(Ax) = Vf~. (28) 

The value obtained is temperature independent, a 
conclusion that seems to contradict experiment. Note 
however, that here the contribution due to the TDS 
is also included. According to us this is more correct 
than separating the TDS from the Bragg reflexions 
since they are always observed together. 

It follows that the kinematical theory cannot explain 
an exponential decrease of the integral intensity with 
the temperature. Nevertheless, when a decrease of that 
intensity is experimentally observed there may be (at 
least) two reasons for it. Either it may be a dynamical 
effect (we refer here to the work of Parthasarathy (1960) 
for more details) or the decrease is found since the in- 
tensity is measured in a limited region around Sn only. 
Since for higher temperatures C(x) decreases faster 
with x and ~0(x, Ax) is a broader function of Ax, at 
constant x, than for lower temperatures, the Bragg 
reflexions broaden more and more by increasing tem- 
perature and the corresponding fraction of the total 
amount of radiation that enters the ionization chamber 
decreases. In tiffs sense we agree with Owen & Williams 
(1947), when they suppose that the increase of the slope 

of the In I In(s0)ds0 versus T curve is connected with 
d AS0 

an increase of the TDS. (As0 indicates a limited region 
of integration around Sn.) 

Let us consider now the top intensity of a Bragg 
reflexion. Assuming that the top intensity is found at 
the point s0=0, we get from formula (12) 

In(0)= Vf~ V(x) exp { -  U(sn, x)}dx. (29) 

In(O) depends implicitly on the form of the crystal. The 
Debye-Waller factor follows from equation (29) if one 
assumes that the crystal is very large (but not so large 
that the kinematical approximation cannot be used). 
To show this we choose a distance r, such that the con- 
tribution of the term with cos (2nk. x) in the expo- 
nential of equation (29) vanishes for all x with Ix[-> r. 
The right-hand side of equation (29) can be split into 
two parts: 

Vf~ l V(x) exp { -  U(sn, x)}dx In(0)= 
d Ixi<r 

+ Vexp ( - 2 W )  I V(x)dx. (30) 
;x,>r 

If the crystal is large the first right-hand term of equa- 
tion (30) is much smaller than the second one and can 
be neglected. One finds 

In(0) ~ V2fo 2 exp ( - 2 W ) ,  (31) 

i.e. the well known Debye-Waller factor. Note that 
the top intensity is also proportional to the square of 
the volume of the crystal. 

For a very small crystal V(x) tends very rapidly to 
zero for increasing x. In the limit, of an infinitely small 
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crystal, we can approximate in formula (29) cos 
(2nk. x) by 1 and in this case one obtains 

In(O)~ Vf~ I ~- co V(x) exp (0)dx = V2fg . (32) 

Tb.e value of the top intensity therefore can vary be- 
tween VZf02 exp ( -  2 W) and VZf2o depending upon the 
crystal size. In the intermediate region between both 
limits the top intensity will show a more involved tem- 
perature dependence than the exponential one. 

The temperature factor of the Bragg reflexion in- 
tensity also depends on mechanical distortions. This 
appears from equation (24). At low temperatures In(O) 
will tend to the temperature independent value 

In(O)= Vf~ I~_oo V(x)dx l°°_oo qOme(x, Ax) 

exp (2niSn. Ax)d(Ax). (33) 

If the crystal is sufficiently large and at high temper- 
atures In(O) will tend to 

In(O)=fzv z exp ( - 2 W ) .  (34) 

In the presence of static mechanical distortions the 
slope of the In In(O) versus T curve increases with the 
temperature. Anharmonicity also causes an increase of 
that slope. Anharmonicity studies based on this last 
effect (following the proposal of Maradudin & Flinn, 
1963) have to take into account the former effect also. 

In the study of the mechanical distortions by har- 
monic analysis of the Debye-Scherrer line intensity 
distributions we have to account apparently for the 
broadening due to the thermal movement. For the 
separation of the instrumental broadening from the 
particle size and the distortion broadening effects one 
generally uses Stokes's (1948) method. Here the ex- 

perimental intensity distribution is considered as the 
convolution of In(s0) given by equation (24) and that 
of a reference powder: ln, tel(S0). 

The thermal broadening effect is separated auto- 
matically from the static mechanical distortion broad- 
ening effect, if a mechanical undistorted reference pow- 
der is used of the same substance as that subjected to 
the analysis. Indeed, according to equations (24), (25) 
and (26) we can write 

I .  (s0) = I.,th(s0) * I.,  me(S0), (35) 
with 

I..,h(s)0 = 

f °° f~ q,,h(x, Zx) J'02 V V(x) exp (2his0. x)dx 
- - o o  

× exp (2niSn. Ax)d(Ax) (36) 
and 

S + S + In,me(S0) = exp (2his0. x)dx ~th(X, ZJX) 
- - o o  o o  

x exp (2nisn. zJx)d(Ax). (37) 

We thank Professor A. G. M. Janner for his critical 
remarks and advice. 
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Interpretation of Anomalous Streaks in Crystals of Anthrone 

BY H. D. FLACK* 

Department of Chem•try, University College London, Gower Street, London W. C. 1, England 

(Received 29 April 1970) 

Streaks on {hl l } Weissenberg photographs of some anthrone crystals have been explained as being due 
to disorder in the stacking sequence of a layer structure or to multiple twinning on (20]-). The two 
views are geometrically identical. With such a model no streaks are either expected or observed on {hOl } 
Weissenberg photographs. 

Introduction 

Flack (1968, 1970) and Glazer (1968, 1970) have 
recently made an extensive study of short-range order, 

* Present address: Cavendish Laboratory, University of 
Cambridge, Cambridge, England. 

thermal vibration and expansion of pseudosymmetric 
and mixed crystals of some small organic molecules. 
For example, stationary-crystal photographs of an- 
throne (I) taken with write plus characteristic X-radia- 
tion show layers of diffuse scattering corresponding to 
k=½, ~, s , . . . .  This diffuse scattering has been inter- 
preted in terms of domains of short-range order off- 


